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1
SPARSE MATRIX DATA STRUCTURE

BACKGROUND

Sparse matrices and sparse vectors may be encoded to
reduce storage requirements and to increase processing effi-
ciency. For example, by storing only the non-zero elements of
sparse matrices and sparse vectors, reductions in storage
requirements may be realized. One example of such an
encoding format is a compressed sparse row (CSR) encoding
format. In some cases, the processing performance of an
encoding format may be highly dependent on the architecture
of'the device that performs computations using sparse matri-
ces and sparse vectors encoded in that format. For example,
encoding formats that place all elements of a row of a sparse
matrix contiguously in an encoded array, such as the CSR
encoding format, may be processed inefficiently by a com-
putation device that is capable of processing multiple rows of
a sparse matrix in parallel. Additionally or alternatively, the
computation device may require additional logic, wiring,
and/or buffers to process such an encoding efficiently enough
to fully leverage the communications interface bandwidth.

SUMMARY

Various embodiments relating to encoding a sparse matrix
into a data structure format that may be efficiently processed
via parallel processing are provided. In one embodiment, a
sparse matrix may be received. A set of designated rows of the
sparse matrix may be traversed according to a deterministic
sequence (e.g., round robin) until all non-zero elements in the
sparse matrix have been placed in a first array. Each time a
row in the set is traversed according to the deterministic
sequence, a next non-zero element in that row may be placed
in the first array, and each row in the set may have a first
non-zero element placed in the first array before a second
element from that row is placed in the first array. If all non-
zero elements for a given row of the set of designated rows
have been placed in the first array, the given row may be
replaced in the set of designated rows with a nextunprocessed
row of the sparse matrix. A data structure in which the sparse
matrix is encoded may be outputted. The data structure may
include the first array.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter. Furthermore, the claimed subject
matter is not limited to implementations that solve any or all
disadvantages noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically shows a computing system according
to an embodiment of the present disclosure.

FIG. 2 shows an example of sparse matrix according to an
embodiment of the present disclosure.

FIG. 3 shows an example of sparse vector according to an
embodiment of the present disclosure.

FIGS. 4-5 show a method for encoding a sparse matrix into
a data structure according to an embodiment of the present
disclosure.

FIG. 6 shows the sparse matrix shown in FIG. 2 encoded
into a data structure according to the method shown in FIGS.
4-5.
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FIG. 7 shows an example of the sparse vector shown in
FIG. 3 encoded into a data structure according to an embodi-
ment of the present disclosure.

DETAILED DESCRIPTION

The present disclosure relates to an approach for represent-
ing a sparse matrix in a data structure. More particularly, the
present disclosure relates to an approach for encoding a
sparse matrix in a data structure in a manner that allows for
highly efficient processing of the sparse matrix by a dedicated
hardware computation device that processes rows of the
sparse matrix in parallel.

In one example, a data structure according to the present
disclosure may include a first array in which non-zero ele-
ments of a sparse matrix may be “pre-multiplexed” or “inter-
leaved” according to a set of designated rows of the sparse
matrix. For example, the non-zero elements may be inter-
leaved into the first array based on a number of rows pro-
cessed in parallel by the computation device. In other words,
a set of designated rows of the sparse matrix that correspond
to the number of rows processed in parallel may be traversed
according to a deterministic sequence until all non-zero ele-
ments in the sparse matrix have been placed in the first array.
Each time a row in the set is traversed according to the
deterministic sequence, a next non-zero element in that row
may be placed in the first array. If all non-zero elements for a
given row of the set of designated rows have been placed in
the first array, the given row may be replaced in the set of
designated rows with a next unprocessed row of the sparse
matrix.

By interleaving the non-zero elements of the sparse matrix
into the first array, a parallel processing unit of the computa-
tion device may begin processing a row before every element
of' that row is received by the computation device. Moreover,
multiple rows of the sparse matrix may be processed simul-
taneously by different parallel processing units. Accordingly,
a sparse matrix encoded in this manner may be processed
more efficiently and a complex routing network of the com-
putation device may be simplified relative to an encoding of
the sparse matrix in which all elements of a row are stored
contiguously in an array, such as the compressed sparse row
(CSR) encoding format.

Furthermore, a data structure representative of a sparse
matrix according to the present disclosure may include a
second array that includes column indices that are mapped to
data buffer addresses of a data buffer of the computation
device that stores a sparse vector. The column indices corre-
spond to the non-zero elements of the sparse matrix placed in
the first array. The sparse vector may be used to perform a
computation with the sparse matrix (e.g., a sparse matrix-
vector multiplication computation). By refactoring the sparse
vector via mapping the column indices of the non-zero ele-
ments of the sparse matrix to the addresses of the data buffer
that stores the sparse vector, no translation may be needed
when the computation device accesses the sparse vector ele-
ments because the vector buffer addresses may be already
stored in the encoding. In this way, on-chip buffering storage
may be reduced relative to a configuration that processes an
encoding that does not map column indices of non-zero ele-
ments in a sparse matrix to addresses of a data buffer that
stores a sparse vector.

Although the pre-multiplexing technique to populate the
first array and the refactoring or mapping technique to popu-
late second array are discussed as being implemented in the
same data structure, it will be understood that each technique
may be implemented independently. In one example, a data
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structure includes the first array having the pre-multiplexed
elements and does not include the second array having refac-
tored elements. Rather, the data structure may include a sec-
ond array having elements representative of locations of val-
ues of the first array organized in a different manner. In
another example, a data structure includes the second array
having refactored elements and does not include the first array
having multiplexed elements. Rather, the data structure may
include a first array having elements representative of values
organized in a different manner.

It will be understood that the encoding of the sparse matrix
and the corresponding data structure may be used in any
suitable computation. For example, the encoded sparse
matrix may be used in sparse matrix-vector multiplication,
another operation that involves the combination of sparse
matrix elements and sparse vector elements in some form,
and/or an operation that uses information encoded in the
sparse matrix to locate an element of a sparse vector. In
another example, the herein described techniques may be
applied to sparse matrix-matrix multiplication. It will be
understood that when the dense representation of the sparse
matrix is encoded into the data structure, the sparse matrix
may undergo a transformative process that results in the infor-
mation representative of the sparse matrix being able to be
processed by a hardware computation device more quickly
via parallel processing. In one example, the sparse matrix
representation may enable an increase in efficiency of opera-
tion of a computation device to fully leverage high-bandwidth
communication capabilities. Moreover, the increase in effi-
ciency may allow for the computation device to be employed
in real-time machine learning applications where the compu-
tation device may be continuously invoked to quickly per-
form computations. Such machine learning may be appli-
cable to image recognition, speech recognition, webpage
ranking, and natural language processing and text search. In
one example, the computation device may be utilized for
training and evaluating deep neural networks. In another
example, the computation device may be utilized in factoring
large numbers, among other applications.

FIG. 1 schematically shows an embodiment of a comput-
ing system 100. The computing system 100 may be config-
ured to process data structures representative of sparse matri-
ces and sparse vectors. The computing system 100 may take
the form of one or more personal computers, server comput-
ers, tablet computers, home-entertainment computers, net-
work computing devices, gaming devices, mobile computing
devices (e.g., tablet), mobile communication devices (e.g.,
smart phone), and/or other computing devices. The comput-
ing system 100 may include a processor 102 in communica-
tion with a mass storage device 104 and an off-chip storage
device 106 via a communications interface 108.

The processor 102 may include one or more processor
cores, and instructions executed thereon may be configured
for sequential, parallel, and/or distributed processing. Indi-
vidual components of the processor optionally may be dis-
tributed among two or more separate devices, which may be
remotely located and/or configured for coordinated process-
ing. Aspects of the processor may be virtualized and executed
by remotely accessible, networked computing devices con-
figured in a cloud-computing configuration.

The processor 102 may include one or more physical
devices configured to execute instructions. For example, the
processor may be configured to execute instructions that are
part of one or more applications, programs, routines, librar-
ies, objects, components, data structures, or other logical
constructs. Such instructions may be implemented to perform
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a task, implement a data type, transform the state of one or
more components, achieve a technical effect, or otherwise
arrive at a desired result.

The mass storage device 104 may include one or more
physical devices configured to hold instructions executable
by the processor 102. When such instructions are imple-
mented, the state of the mass storage device 104 may be
transformed—e.g., to hold different data. The mass storage
device 104 may include removable and/or built-in devices.
The mass storage device 104 may include optical memory,
semiconductor memory, and/or magnetic memory, among
others. The mass storage device 104 may include volatile,
nonvolatile, dynamic, static, read/write, read-only, random-
access, sequential-access, location-addressable, file-address-
able, and/or content-addressable devices.

Instructions stored in the mass storage device 104 may be
executed by the processor 102 using portions of the off-chip
storage device 106. The off-chip storage device 106 may
include one or more physical devices configured to hold data
utilized to carry out execution of the instructions, and store a
result when applicable. For example, the off-chip storage
device may include one or more volatile memory devices. In
one particular example, the off-chip storage device 104
includes dynamic random-access memory (DRAM). It
should be understood that the off-chip storage device may
include any suitable type of storage device without departing
from the scope of the present description.

In one example, instructions may be executed as part of a
software program that may utilize various computations as
part of execution. As such, the computing system 100 may
include a specialized computation device 110 configured to
perform specific computations in a very fast and efficient
manner. The computation device 110 may be implemented in
dedicated hardware as a logic circuit distinct from the pro-
cessor 102, and linked to the processor 102 by the communi-
cations interface 108. For example, the processor 102 may
execute an instruction that invokes the computation device
110 to perform computations specified by the instruction. The
computation device 110 may be configured to receive the
instruction to perform the computations from the software
program, retrieve data elements from the off-chip storage
device 106 to carry out the computations, process the com-
putations, and return results of the computation to the oft-chip
storage device. Such a routine may be carried out repeatedly
or continuously throughout execution of the software pro-
gram, such that data may be streamed from the oft-chip stor-
age device to the computation device.

Furthermore, the processor 102 may be configured to
execute instructions that encode a sparse matrix into a data
structure that may be stored in the off-chip storage device 106
and sent to the computation device 110 to perform a compu-
tation as will be discussed in further detail below. For
example, the sparse matrix may be stored in a dense format
(e.g., including zero and non-zero elements) in the mass
storage device 104, the off-chip storage device 106, or may be
received from another computing device that may be physi-
cally distinct from the computing system 100. The software
program executed by the processor 102 may be configured to
transform the dense representation of the sparse matrix into
the data structure. The data structure may be outputted to the
off-chip storage device 106 and sent to the computation
device 110 to perform one or more computations.

The hardware in which the computation device 110 is
implemented may be an integrated circuit such as a program-
mable logic device (PLD) or application specific integrated
circuit (ASIC). A field programmable gate array (FPGA) and
a complex programmable logic device (CPLD) are two



US 9,367,519 B2

5

examples of suitable PL.Ds that may be used to implement the
computation device 110. The computation device 110 may be
logically separated from the processor 102 and may include
an on-chip computing unit 112 and an on-chip storage unit
114. In some embodiments, the on-chip computing unit 112
may include a plurality of parallel processing units config-
ured to process diftferent rows of a sparse matrix in parallel as
part of performing a computation. Further, the on-chip stor-
age device 114 may be formed separate from the off-chip
storage device 106. Note that, in some instances, ‘on-chip’
means that the component is physically integrated with the
computation device, and ‘off-chip’ means that the component
is physically distinct from the computation device.

In some embodiments, the computation device 110 may be
implemented as a system-on-chip (“SoC”). In a SoC imple-
mentation, typically the processor 102, the off-chip storage
device 106, and the computation device 110, are formed as
separate logic units within a single SoC integrated circuit, and
the communications interface 108 includes an on-chip com-
munications interface subsystem to enable communication
between these separate logic units. In some embodiments, the
processor 102 and the computation device 110 may be physi-
cally integrated in the same chip. Further, the off-chip storage
may or may not be integrated in that chip. In some embodi-
ments, the computation device 110 may be in communication
with a dedicated off-chip storage device 120 that is physically
separate from the off-chip storage device 106. In some
embodiments, the dedicated oft-chip storage device 120 may
only be accessible by the computation device 110. In one
example, the off-chip storage device 120 includes DRAM
dedicated to the computation device 110. In other embodi-
ments, the off-chip storage device 106 and the dedicated
off-chip storage device 120 may be the same device.

Communications interface 108 refers generally to one or
more communications subsystems provided to enable com-
munications among the various components of the computing
system 100. The communications interface 108 may include
one or more discrete /O paths, each potentially utilizing
separate protocols, encodings, and/or physical interfaces. In
particular, the communications interface 108 may be config-
ured to provide high-bandwidth communication between the
off-chip storage device 106 and the computation device 110,
such that data elements may be continuously streamed in
multiple data streams from the oft-chip storage device to the
computation device to perform computations. More particu-
larly, each data stream may be sent from the off-chip storage
device 106 to a different parallel processing unit of a plurality
of parallel processing units 116 of the computation device
110. In one particular example, the communications interface
provides up to 32 separate data streams between the off-chip
storage device 106 and the computation device 110. It should
be understood that the communications interface may pro-
vide any suitable number of data streams between the off-chip
storage device and the computation device without departing
from the scope of the present description.

In one example, the computation device 110 may be con-
figured to perform computations in the form of sparse matrix-
vector multiplication. In particular, a sparse matrix-vector
multiplication computation may include multiplying each
row of a sparse matrix by a vector. The sparse matrix may be
encoded in a data structure that may be stored in the off-chip
storage device 106. The data structure may be streamed from
the off-chip storage device 106 to the computation device 110
according to the bandwidth capability of the communications
interface 108. For example, each row of the sparse matrix may
be sent as a different data stream. More particularly, each data
stream may be sent from the off-chip storage device 106 to a
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different parallel processing unit of the plurality of parallel
processing units 116. In some embodiments, a parallel pro-
cessing unit may process every row value in a given row of the
sparse matrix, and each parallel processing unit may process
a different row in parallel. In one particular example, the
communications interface 108 may be capable of streaming
up to 32 sparse matrix rows in parallel.

Furthermore, the vector may be stored in the on-chip stor-
age device 114 of the computation device 110. More particu-
larly, the vector may be stored in a data buffer 118 of the
on-chip storage device 114. In one example, the data buffer
118 is a banked data buffer in which each bank may be
independently addressable. In some embodiments, an
addressing scheme of the data buffer and a sparse structure of
the vector may be fixed and known in advance of the compu-
tation to allow for suitable encoding of the sparse matrix that
maps to the addresses of the vector buffer. Note that although
the vector elements are stored in the on-chip storage device
during processing of the sparse matrix, it will be understood
that the vector elements may be occasionally brought from
the off-chip storage device or the mass storage device to the
on-chip storage device. For example, values of a first vector
may be replaced in the data buffer with values from a second
different vector when operation switches to performing com-
putations involving the second vector.

To parallelize the sparse matrix-vector multiplication com-
putation, multiple rows of elements of the sparse matrix may
be multiplied by the elements of the vector in parallel. In
particular, as the data structure representing the sparse matrix
is received by the computation device, the on-chip processor
112 may be configured to parse the data structure into differ-
ent rows of the sparse matrix and each of the plurality of
parallel processing units 116 of the on-chip processor 112
may be configured to process a different row of the sparse
matrix in parallel.

FIG. 2 shows an example of a sparse matrix 200 according
to an embodiment of the present disclosure. The sparse matrix
200 is shown as a dense representation in which zero and
non-zero elements are included. In this example, the sparse
matrix 200 includes eight rows indicated by row indices 202
and nine columns indicated by column indices 204. Gener-
ally, the rows may be traversed from top-to-bottom and the
columns may be traversed from left-to-right. It will be under-
stood that a sparse matrix may include any suitable number of
rows and columns. The illustrated example of the sparse
matrix may be referred to herein below in the context of
encoding the sparse matrix into a data structure.

FIG. 3 shows an example of a sparse vector 300 according
to an embodiment of the present disclosure. The sparse vector
300 is shown as a dense representation in which zero and
non-zero elements are included. In this example, the sparse
vector 300 includes nine rows or locations indicated by indi-
ces 302. In particular, the indices identify a location of an
element in the sparse vector. Generally, the rows or locations
may be traversed from top-to-bottom (or first-to-last). It will
be understood that a sparse vector may include any suitable
number of rows or locations. The illustrated example of the
sparse vector may be referred to herein below in the context of
encoding a sparse matrix into a data structure.

FIGS. 4-5 show a method 400 for encoding a sparse matrix
into a data structure according to an embodiment of the
present disclosure. For example, the method 400 may be
performed by the computing system 100 shown in FIG. 1.
FIGS. 6 and 7 show data structures that may be used to
perform and/or produced by the method 400.

FIG. 6 shows an example ofthe sparse matrix 200 shown in
FIG. 2 encoded into a data structure 600 according to the
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method shown in FIG. 4. The data structure 600 includes a
first array 602 in which non-zero elements of the sparse
matrix may be stored. Column indices 604 of the non-zero
elements are shown for purposes of clarity, but are not actu-
ally stored as part of the data structure 600. The data structure
600 includes a second array 606 in which addresses of the
data buffer 118 where the column indices 604 of the non-zero
elements that are mapped to the data buffer addresses may be
stored. The data structure 600 includes a third array 608
including a count value for each row of the sparse matrix.
Alternatively, in some embodiments, the third array 608 may
include offsets or pointers indicating where a new row of the
sparse matrix starts in the first and second arrays. In the
illustrated example, the sparse matrix includes eight rows,
and the third array includes eight count values. The count
values indicate how many non-zero elements are included in
each row of the sparse matrix. The illustrated embodiment of
the data structure includes three arrays, although it will be
appreciated that the data structure may include any suitable
number of arrays without departing from the scope of the
present disclosure. Note that in some embodiments one or
more of the first, second, and/or third arrays may be imple-
mented as more than one array. For example, the first array
may be split into two arrays.

FIG. 7 shows an example of the sparse vector 300 encoded
into a data structure 700 that may be stored in the data buffer
118 shown in FIG. 1. The data structure 700 of the sparse
vector may be used to encode the sparse matrix 200 into the
data structure 600. Address locations 702 of the data buffer
118 that hold the sparse vector elements and indices 704 of
the sparse vector elements stored in the data buffer are shown
for purposes of clarity, but are not actually stored as part of the
data structure 700. The data structure 700 includes a first array
706 in which the elements (e.g., values) of the sparse vector
may be stored. The elements of the sparse vector may be
associated with the addresses of the data buffer by traversing
the rows of the sparse vector from top-to-bottom (e.g., the first
element is stored at the first address).

Since the number of rows to be processed in parallel, the
addressing scheme of the vector buffer, and the sparsity struc-
ture of the vector may be fixed while the encodings are used,
and known in advance of encoding the sparse matrix and the
sparse vector, such a priori knowledge may be leveraged to
omit elements from being stored in the data structures in order
to reduce storage size of the data structures, yet make efficient
use of the parallel processing units. In the illustrated example,
it may be assumed that elements in rows 1, 2, and 7 of the
sparse vector will always be zero. As such, these elements
may be omitted from the data structure 700. It will be appre-
ciated that any suitable number of elements may be omitted
from being stored in the data structures described herein
based on a priori knowledge of the sparse vector (and/or the
sparse matrix) without departing from the scope of the
present disclosure. The sparse matrix 200 encoded in the data
structure 600 shown in FIG. 6 and the sparse vector 300
encoded in the data structure 700 shown in FIG. 7 will be
referenced throughout discussion of the method 400.

At 402, the method 400 may include receiving the sparse
matrix. For example, the sparse matrix may be stored in a
dense format (e.g., including zero and non-zero elements) in
the mass storage device 104, the oft-chip storage device 106,
or may be received from another computing device that may
be physically distinct from the computing system 100 shown
in FIG. 1.

In some embodiments, the sparse matrix may be encoded
in a different format, and receiving the sparse matrix may
include decoding the sparse matrix from the other format
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before encoding the sparse matrix into the data structure. In
another example, the sparse matrix may be directly translated
from another format to the encoding of the present disclosure.

At404, the method 400 may include mapping elements and
corresponding indices of the sparse vector to addresses of the
data buffer. Note that, in practice, the sparse vector values are
only known at runtime, and the row index-to-address map-
ping is known prior to runtime. The reindexing of the column
addresses of the sparse matrix allows for the sparse matrix to
be processed more efficiently.

Note that, in the example shown in FIG. 7, the elements in
rows 1, 2, and 7 of the sparse vector 300 are omitted from the
data structure 700 based on stored data indicating a priori
knowledge of the sparse vector that those elements will
always be zero.

Optionally or additionally, at 406, the method 400 may
include reordering the rows of the sparse matrix to optimize
processing of the sparse matrix. For example, reordering the
rows may include order longest rows first to reduce imbalance
atthe end of the process. In another example, reorder the rows
may include reordering input vector elements to reduce con-
flict between banks of the data buffer.

At 408, the method 400 may include initializing the first
row in the first array, the second array, and the third array as
the first row of the sparse matrix. By initializing the first row
in the arrays as the first row in the sparse matrix, a starting
point may be established to track when every row in the
matrix has been traversed and processed when traversing the
sparse matrix according to a deterministic sequence (e.g.
round robin). It will be understood that any suitable determin-
istic sequence may be employed to traverse the sparse matrix.

At 410, the method 400 may include determining whether
all non-zero elements in the sparse matrix have been placed in
the first array 602 of the data structure 600. If all non-zero
elements of the sparse matrix have been placed in the first
array, then the method 400 moves to 434. Otherwise, the
method 400 moves to 412.

At 412, the method 400 may include going to the next row
in a set of designated rows. For example, the number of rows
designated to be in the set may correspond to a number of
rows that the computation device 110 shown in FIG. 1 may be
configured to process in parallel. In the illustrated example,
for the sake of simplicity and ease of understanding, the set
includes 4 rows. It will be appreciated that the set may include
any suitable number of rows without departing from the scope
of the present disclosure. When going to the next row in the
set of designated rows, the rows may be traversed according
to a deterministic sequence. For example, the rows may be
traversed from top-to-bottom in the set in a round robin fash-
ion, but rows pointed to by the set may not be in the same
order as the array order. It will be understood that rows may be
traversed in any suitable manner without departing from the
scope of the present disclosure. Further, it will be understood
that multiple rows may be accessed simultaneously.

At 414, the method 400 may include determining whether
all-non zero elements in that row have been placed in the first
array 602. If all non-zero elements of that row have been
placed in the first array, then the method 400 moves to 420.
Otherwise, the method 400 moves to 416.

At 416, the method 400 may include placing a next non-
zero element in that row in the first array 602. When placing
the next non-zero element in that row, elements in that row
may be traversed from left-to-right. However, elements may
be traversed in a different manner without departing from the
scope of the present disclosure.

At 418, the method 400 may include placing an address to
which a vector value at a column index of that next non-zero
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element has been mapped in the data buffer in a correspond-
ing position in the second array 606. Alternatively, in some
embodiments, the address may be replaced with a column
index similar to the second array of the CSR encoding format.
Accordingly, the method may include placing a column index
of that next non-zero element in a corresponding position in
the second array 606.

At 420, the method 400 may include placing a non-zero
count value for the completed row in the third array 608.
Alternatively, in some embodiments, the non-zero element
count values may be replaced with an element index encoding
similar to the third array of the CSR encoding format. In
particular, the third array may include a list of the list of value
indexes where each row of the sparse matrix starts. In other
words, the indexes map a first element of each row in the
sparse matrix to a position in the value array. Accordingly, the
method may include for each row of the sparse matrix, plac-
ing a value corresponding to a position in the first array of a
first non-zero element in that row in the third array.

At 422, the method 400 may include determining whether
any unprocessed rows in the sparse matrix are not in the set of
designated rows. In one example, an unprocessed row may be
defined as a row that has not had any non-zero elements
placed in the first array and has not been included in the set of
designated rows. If there are any unprocessed rows in the
sparse matrix, then the method 400 moves to 424. Otherwise,
the method 400 moves to 430.

At 424, the method 400 may include replacing a completed
row with the next unprocessed row in the sparse matrix in the
set of designated rows. In one example, a completed row may
be defined as a row in which all non-zero elements have been
placed in the first array 602. Further, a row may be considered
being processed if that row is included in the set of designated
rows and not all non-zero elements in that row have been
placed in the first array 602. Note that if a row has no non-zero
elements, then that row may be replaced with a next row that
has non-zero elements. The row that has no non-zero ele-
ments may or may not be represented by a null counter in the
third array depending on the embodiment of the data struc-
ture.

At 426, the method 400 may include placing a next non-
zero element in that row in the first array 602.

At 428, the method 400 may include placing an address to
which a vector value at a column index of that next non-zero
element has been mapped in the data buffer in a correspond-
ing position in the second array 606. Alternatively, in some
embodiments, the address may be replaced with a column
index similar to the second array of the CSR encoding format.
Accordingly, the method may include placing a column index
of that next non-zero element in a corresponding position in
the second array 606. Next, the method returns to 410 to
continue populating the first array with non-zero elements
and the second array with corresponding column indices of
the non-zero elements mapped to data buffer addresses.

At 430, the method 400 may include determining whether
less than all rows in the set are being processed. In other
words, it may be determined whether there are any completed
rows in the set that cannot be replaced because all other rows
in the sparse matrix have been completed. If there are any
completed rows then the method 400 moves to 432. Other-
wise, the method 400 returns to 410 to continue populating
the first and second arrays.

At432, the method 400 may include placing invalid entries
in the first array and the second array to maintain a number of
array entries per set. For example, if the set includes four rows
and only three rows are still being processed, invalid entries
may be added to the first and second arrays that represent the
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fourth row. In one example, invalid entries include zeros. By
adding the invalid entries when less than all rows in a set are
being processed, proper multiplexing or spacing may be
maintained in the arrays, so that the appropriate elements may
be sent to the appropriate parallel processing unit during
decoding of the data structure. Next, the method returns to
404 to continue populating the first array with non-zero ele-
ments and the second array with corresponding column indi-
ces of the non-zero elements mapped to data bufter addresses.

At 434, the method 400 may include outputting the data
structure in which the sparse matrix is encoded. The data
structure may include the first array, the second array, and the
third array. For example, the data structure may be output to
a storage location of the computing system 100, such as the
off-chip storage device 106. In some embodiments, the data
structure may be output to the computation device 110 to
perform a computation using the data structure that represents
the sparse matrix and the sparse vector, such as a sparse
matrix-vector multiplication computation.

The method may be performed to transform the dense
representation of the sparse matrix into the data structure. The
data structure may allow for more efficient processing of the
sparse matrix via parallel processing, such as by the compu-
tation device 110 shown in FIG. 1. In particular, by traversing
the rows of the set to place elements in the first array, the
elements may be interleaved in the encoding according to the
parallel processing configuration of the computation device.
In other words, by placing the elements in the first array in this
order, the elements can be loaded from memory into the
parallel processing units and processed more continuously
and directly to increase efficiency of the computation device.

Furthermore, because the column indices of the elements
in the first array are mapped to the addressing scheme of the
data buffer, there may be a one-to-one correspondence
between the logical block in the encoding and the physical
block in the computation device. Accordingly, the hardware
of'the computation device may be made less complex.

Applying the method 400 to the sparse matrix 200 may
result in the first array 602, the second array 606, and the third
array 608 of the data structure 600 being populated with the
values in the order shown in FIG. 6. In particular, the set of
designated rows initially includes rows 1-4 of the sparse
matrix 200. Beginning with row 1 (i.e., the next row in the
set), the next non-zero element in that row (i.e., value 1) is
placed in the first array as the first element. The column index
of that non-zero element is column 9, which maps to address
6 of the data buffer. So, the value 6 is placed in the second
array as the first element.

Next, row 2 is traversed and the next non-zero element in
that row (i.e., value 2) is placed in the first array as the second
element. The column index of that non-zero element is col-
umn 5, which maps to address 3 of the data buffer. So, the
value 3 is placed in the second array as the second element.

Next, row 3 is traversed and the next non-zero element in
that row (i.e., value 3) is placed in the first array as the third
element. The column index of that non-zero element is col-
umn 3, which maps to address 1 of the data buffer. So, the
value 1 is placed in the second array as the third element.

Next, row 4 is traversed and the next non-zero element in
that row (i.e., value 9) is placed in the first array as the fourth
element. The column index of that non-zero element is col-
umn 9, which maps to address 6 of the data buffer. So, the
value 6 is placed in the second array as the fourth element.

Since row 4 is the last row in the set, row traversal returns
to the first row in the set, which is row 1. Since there are no
more non-zero elements in row 1, row 1 is replaced with the
next unprocessed row in the sparse matrix 200 (i.e., row 5) in
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the set. Since the first row is completed the non-zero count
value for the first row may be placed in the third array. At this
point, the set of designated rows includes rows 5, 2, 3, and 4.
Next, row 5 is traversed and the next non-zero element in that
row (i.e., value 8) is placed in the first array as the fifth
element. The column index of that non-zero element is col-
umn 5, which maps to address 3 of the data buffer. So, the
value 3 is placed in the second array as the fifth element.

Next, row 2 is traversed and since there are no more non-
zero elements in row 2, row 2 is replaced with the next
unprocessed row in the sparse matrix 200 (i.e., row 6) in the
set. Since the second row is completed the non-zero count
value for the second row may be placed in the third array. At
this point, the set of designated rows includes rows 5, 6, 3, and
4. Next, row 6 is traversed and the next non-zero element in
that row (i.e., value 1) is placed in the first array as the sixth
element. The column index of that non-zero element is col-
umn 3, which maps to address 1 of the data buffer. So, the
value 1 is placed in the second array as the sixth element.

Next, row 3 is traversed and the next non-zero element in
that row (i.e., value 4) is placed in the first array as the seventh
element. The column index of that non-zero element is col-
umn 4, which maps to address 2 of the data buffer. So, the
value 4 is placed in the second array as the seventh element.

Next, row 4 is traversed and since there are no more non-
zero elements in row 4, row 4 is replaced with the next
unprocessed row in the sparse matrix 200 (i.e., row 7) in the
set. Since the fourth row is completed the non-zero count
value for the fourth row may be placed in the third array. At
this point, the set of designated rows includes rows 5, 6, 3, and
7. Next, row 7 is traversed and the next non-zero element in
that row (i.e., value 6) is placed in the first array as the eighth
element. The column index of that non-zero element is col-
umn 9, which maps to address 6 of the data buffer. So, the
value 6 is placed in the second array as the eighth element.

Next, row 5 is traversed and since there are no more non-
zero elements in row 5, row 5 is replaced with the next
unprocessed row in the sparse matrix 200 (i.e., row 8) in the
set. Since the fifth row is completed the non-zero count value
for the fifth row may be placed in the third array. At this point,
the set of designated rows includes rows 8, 6, 3, and 7. Next,
row 8 is traversed and the next non-zero element in that row
(i.e., value 7) is placed in the first array as the ninth element.
The column index of that non-zero element is column 5,
which maps to address 3 of the data buffer. So, the value 3 is
placed in the second array as the ninth element.

Next, row 6 is traversed and the next non-zero element in
that row (i.e., value 3) is placed in the first array as the tenth
element. The column index of that non-zero element is col-
umn 4, which maps to address 2 of the data buffer. So, the
value 2 is placed in the second array as the tenth element.

Next, row 3 is traversed and the next non-zero element in
that row (i.e., value 5) is placed in the first array as the
eleventh element. The column index of that non-zero element
is column 6, which maps to address 4 of the data buffer. So,
the value 4 is placed in the second array as the eleventh
element.

Next, row 7 is traversed and since there are no more non-
zero elements in row 7 and no more unprocessed rows in the
sparse matrix to be added to the set, invalid entries in the form
of zeros are placed in the first and second arrays as the twelfth
elements. The zeros are placed in the arrays to maintain
proper multiplexing of elements within the set so as to align
with the number of parallel processing units processing the
rows of the sparse matrix (e.g., 4). Since the seventh row is
completed the non-zero count value for the seventh row may
be placed in the third array.
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Next, row 8 is traversed and since there are no more non-
zero elements in row 8 and no more unprocessed rows in the
sparse matrix invalid entries in the form of zeros are placed in
the first and second arrays as the thirteenth elements. Since
the eighth row is completed the non-zero count value for the
eighth row may be placed in the third array. Next, row 6 is
traversed and the next non-zero element in that row (i.e., value
2) is placed in the first array as the fourteenth element. The
column index of that non-zero element is column 6, which
maps to address 4 of the data buffer. So, the value 4 is placed
in the second array as the fourteenth element.

Next, row 3 is traversed and the next non-zero element in
that row (i.e., values 7) is placed in the first array as the
fifteenth element. The column index of that non-zero element
is column 8, which maps to address 5 of the data buffer. So,
the value 5 is placed in the second array as the fourteenth
element.

Since the other rows in the set are completed, zeros are
placed in the first and second arrays as the sixteenth and
seventeenth elements to maintain proper multiplexing. The
encoding of the sparse matrix continues in this manner until
all non-zero elements of the sparse matrix have been placed in
the first array.

The third array may be populated by counting a number of
non-zero elements in each row of the sparse matrix. For
example, the first row includes one non-zero element, so the
value 1 is placed in the third array as the first element. The
second row includes one non-zero element, so the value 1 is
placed in the third array as the second element. The third row
includes five non-zero elements, so the value 5 is placed in the
third array as the third element, and so on until all rows of'the
sparse matrix have been accounted for in the third array.

It will be understood that although zeros are used as initial
markers in the arrays, any suitable symbols may be used
without departing from the scope of the present disclosure,
and the herein described approach for encoding a sparse
matrix may be broadly applicable to such sparse matrices.

Although the sparse matrix encoding approach has been
discussed in the context of being processed by a computation
device including a plurality of parallel processing units, it will
be understood that the sparse matrix encoding approach may
be processed by any suitable computing system without
departing from the scope of the present disclosure. For
example, the encoding may also be used by CPUs, CPUs with
vector units, GPUs, and other suitable types of computing
devices.

Although the sparse matrix encoding approach has been
discussed in the context of training and evaluating deep neural
networks, it will be understood that the sparse matrix encod-
ing approach may be employed for any suitable processing
operations without departing from the scope of the present
disclosure.

It will be understood that the configurations and/or
approaches described herein are exemplary in nature, and that
these specific embodiments or examples are not to be consid-
ered in a limiting sense, because numerous variations are
possible. The specific routines or methods described herein
may represent one or more of any number of processing
strategies. As such, various acts illustrated and/or described
may be performed in the sequence illustrated and/or
described, in other sequences, in parallel, or omitted. Like-
wise, the order of the above-described processes may be
changed.

The subject matter of the present disclosure includes all
novel and nonobvious combinations and subcombinations of
the various processes, systems and configurations, and other
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features, functions, acts, and/or properties disclosed herein,
as well as any and all equivalents thereof.
The invention claimed is:
1. A method for encoding a sparse matrix into a data struc-
ture, the data structure including a first array, the method
comprising:
on a computing system including a computation device
including a plurality of parallel processing units:
receiving the sparse matrix;
traversing a set of designated rows of the sparse matrix
according to a deterministic sequence until all non-
zero elements in the sparse matrix have been placed in
the first array, wherein the sparse matrix is utilized by
the computation device to perform a computation, and
wherein a number of designated rows in the set cor-
responds to a number of parallel processing units of
the computation device;
each time a row of the set is traversed according to the
deterministic sequence, placing a next non-zero ele-
ment in that row in the first array, wherein each row in
the set has a first non-zero element placed in the first
array before a second element from that row is placed
in the first array;
if all non-zero elements for a given row of the set of
designated rows have been placed in the first array,
replacing the given row in the set of designated rows
with a next unprocessed row of the sparse matrix; and
outputting, to a storage device of the computing system,
the data structure in which the sparse matrix is
encoded.
2. The method of claim 1, wherein the data structure further
includes a second array, and the method further comprises:
mapping elements and corresponding indices of a sparse
vector to addresses of a data buffer of the computation
device, wherein the sparse vector is selected to perform
a computation with the sparse matrix utilizing the par-
allel processing units of the computation device; and

each time a next non-zero element is placed in the first
array, placing an address to which a vector value at a
column index of that next non-zero element has been
mapped in the data buffer in a corresponding position in
the second array.

3. The method of claim 2, wherein the number of desig-
nated rows in the set, the addressing scheme of the data buffer,
and a structure of the vector are known a priori.

4. The method of claim 1, wherein the data structure further
includes a second array, and the method further comprises,
each time a next non-zero element is placed in the first array,
placing a column index of that next non-zero element in a
corresponding position in the second array.

5. The method of claim 4, further comprising:

placing invalid elements into the first array and/or the sec-

ond array to maintain a number of entries that corre-
sponds to a number of rows in the set.

6. The method of claim 1, wherein the data structure further
includes a third array, and the method further comprises for
each row of the sparse matrix, placing a value corresponding
to a number of non-zero elements in that row into the third
array.

7. The method of claim 1, wherein the data structure further
includes a third array, and the method further comprises for
each row of the sparse matrix, placing a value corresponding
to aposition in the first array ofa first non-zero element in that
row in the third array.

8. The method of claim 1, further comprising:

reordering one or more rows of the sparse matrix prior to

placing non-zero elements in the first array.
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9. A computing system comprising:

a computation device including a plurality of parallel pro-

cessing units;

a processor physically distinct from the computation

device; and

a storage device holding instructions executable by the

processor to:

receive a sparse matrix;

traverse a set of designated rows of the sparse matrix
according to a deterministic sequence until all non-
zero elements in the sparse matrix have been placed in
a first array, wherein the sparse matrix is utilized by
the computation device to perform a computation, and
wherein a number of designated rows in the set cor-
responds to a number of parallel processing units of
the computation device;

each time a row of the set is traversed according to the
deterministic sequence, place a next non-zero ele-
ment in that row in the first array, wherein each row in
the set has a first non-zero element placed in the first
array before a second element from that row is place
in the first array; and

if all non-zero elements for a given row of the set of
designated rows have been placed in the first array,
replace the given row in the set of designated rows
with a next unprocessed row of the sparse matrix; and

output, to the storage device, a data structure in which
the sparse matrix is encoded, wherein the data struc-
ture includes the first array.

10. The computing system of claim 9, wherein the compu-
tation device includes a data buffer, and wherein the storage
device further holds instructions executable by the processor
to:

map elements and corresponding indices of a sparse vector

to addresses of the data buffer, and

each time a next non-zero element is placed in the first

array, place an address to which a vector value at a
column index of that next non-zero element has been
mapped in the data buffer in a corresponding position in
a second array, wherein the data structure includes the
second array.

11. The computing system of claim 10, wherein the number
of designated rows in the set, the addressing scheme of the
data buffer, and a structure of the vector are known a priori.

12. The computing system of claim 9, wherein the storage
device further holds instructions executable by the processor
to:

each time a next non-zero element is placed in the first

array, place a column index of that next non-zero ele-
ment in a corresponding position in a second array,
wherein the data structure includes the second array.

13. The computing system of claim 12, wherein the storage
device further holds instructions executable by the processor
to:

place invalid elements into the first array and/or the second

array to maintain a number of entries that corresponds to
a number of rows in the set.

14. The computing system of claim 9, wherein the storage
device further holds instructions executable by the processor
to:

for each row of the sparse matrix, place a value correspond-

ing to a number of non-zero elements in that row into a
third array, wherein the data structure includes the third
array.

15. The computing system of claim 9, wherein the storage
device further holds instructions executable by the processor
to:
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for each row of the sparse matrix, place a value correspond-
ing to a position in the first array of a first non-zero
element in that row in a third array, wherein the data
structure includes the third array.

16. The computing system of claim 9, wherein the storage

device further holds instructions executable by the processor

reorder one or more rows of the sparse matrix prior to

placing non-zero elements in the first array.
17. A method for encoding a sparse matrix into a data

structure including a first array and a second array, the method
comprising:
on a computing system including a computation device

including a plurality of parallel processing units:

receiving the sparse matrix;

mapping elements and corresponding indices of a sparse
vector to addresses of the data buffer, wherein the
sparse vector is selected to perform a computation
with the sparse matrix;

traversing a set of designated rows of the sparse matrix
according to a deterministic sequence until all non-
zero elements in the sparse matrix have been placed in
the first array, wherein the sparse matrix is utilized by
the computation device to perform a computation, and
wherein a number of designated rows in the set cor-
responds to a number of parallel processing units of
the computation device;
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each time a row of the set is traversed according to the
deterministic sequence, placing a next non-zero ele-
ment in that row in the first array, wherein each row in
the set has a first non-zero element placed in the first
array before a second element from that row is placed
in the first array;

each time a next non-zero element is placed in the first
array, placing an address to which a vector value at a
column index of that next non-zero element has been
mapped in the data buffer in a corresponding position
in a second array;

if all non-zero elements for a given row of the set of
designated rows have been placed in the first array,
replacing the given row in the set of designated rows
with a next unprocessed row of the sparse matrix; and

outputting, to a storage device of the computing system,
the data structure in which the sparse matrix is
encoded, wherein the data structure includes the first
array and the second array.

18. The method of claim 17, wherein the data structure
further includes a third array, and the method further com-
prises for each row of the sparse matrix, placing a value
corresponding to a number of non-zero elements in that row

25 into the third array.



